

PRELIMINARY

ZMD31150

Fast Automotive Sensor Signal Conditioner

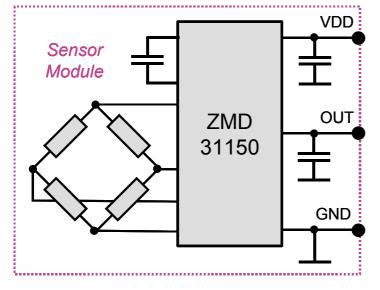
Datasheet

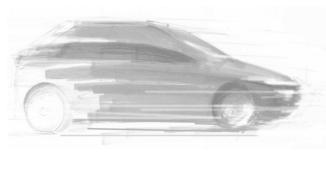
Features

- Digital compensation of sensor offset, sensitivity, temperature drift and non-linearity
- Adjustable to nearly all bridge sensor types, analog gain: 420, over all gain: up to 2000
- Output options: ratiometric analog voltage output (5-95% in maximum, 12.4bit resolution) or ZACwire[™] (digital one-wire-interface)
- Temperature compensation: internal or external diode, bridge resistance, thermistor
- · Sensor biasing by voltage or constant current
- Sample rate up to 7.8kHz
- High voltage protection up to 33V
- Reverse polarity and short circuit protection
- Wide operation temperature -40...+150°C
- Supply voltage 4.5...5.5V
- Traceability by user-defined EEP entries
- Several safety- and diagnostic functions

Benefits

- No external trimming components required
- PC-controlled configuration and One-Shot calibration via one-wire interface: simple, low cost, quick and precise
- End-of-Line calibration via one-wire-interface
- High accuracy (0.25% FSO @ -25 to 85°C; 0.5% FSO @ -40 to 125°C)


Brief Description


ZMD31150 is a CMOS integrated circuit for highly-accurate amplification and sensor-specific correction of bridge sensor signals. Digital compensation of sensor offset, sensitivity, temperature drift and non-linearity is accomplished via a 16-bit RISC micro-controller running a correction algorithm with calibration coefficients stored in an EEPROM.

The ZMD31150 is adjustable to nearly all bridge sensor types. Measured values are provided at the ratiometric analog voltage output or at the digital ZACwireTM and I²C interface. The digital interface can be used for a simple PC-controlled calibration procedure, in order to program a set of calibration coefficients into an on-chip EEPROM. Thus a specific sensor and a ZMD31150 are mated digitally: fast, precise and without the cost overhead associated with trimming by external devices or laser.

The ZMD31150 is optimized for automotive environments by it's special protection circuitry and excellent electromagnetic compatibility.

- Evaluation kit available with samples
- Mass calibration solution
- Customization possible for large

Copyright © 2007, ZMD AG, Rev. 1.00, 2008-06-04

Advanced Automotive Sensor Signal Conditioner

Datasheet

PRELIMINARY

2/17

Contents

1.	CIRCUIT DESCRIPTION	3
1.1	SIGNAL FLOW	
1.2		
1.3		
1	1.3.1. Programmable Gain Amplifier	
	1.3.2. XZC - Analog Sensor Offset Compensation	
1	1.3.3. Measurement Cycle	
1	1.3.4. Analog-to-Digital Converter	
1.4		
1.5		
1	1.5.1. Operation Modes	
	1.5.2. Start Up Phase	
1	1.5.3. Conditioning Calculation	
1.6	ANALOG OUTPUT AOUT	9
1.7	' Serial Digital Interface	10
1.8	SAFETY FEATURES, WATCHDOG AND ERROR DETECTION	10
1.9	HIGH VOLTAGE, REVERSE POLARITY AND SHORT CIRCUIT PROTECTION	10
2.	APPLICATION CIRCUIT EXAMPLE	11
3.	ESD-PROTECTION	12
4.	PIN CONFIGURATION, LATCH-UP AND PACKAGE	12
5.	IC CHARACTERISTICS	13
5.1	ABSOLUTE MAXIMUM RATINGS	13
5.2		
5.3		
5.4		
6.	RELIABILITY	17
7.	CUSTOMIZATION	17
8.	RELATED DOCUMENTS	17

Copyright © 2007, ZMD AG, Rev. 1.00, 2008-06-04

Advanced Automotive Sensor Signal Conditioner

Datasheet

PRELIMINARY

1. Circuit Description

1.1 Signal Flow

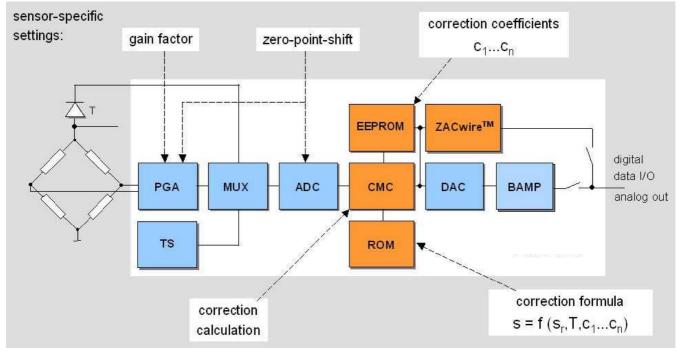


Fig.2: Block diagram of ZMD31150

The ZMD31150's signal path is partly analog (blue) and partly digital (red). The analog part is realized differential – this means the differential bridge sensor signal is internal handled via two signal lines, which are rejected symmetrically around a common mode potential (analog ground = VDDA/2). Consequently it is possible to amplify positive and negative input signals, which are located in the common mode range of the signal input.

The differential signal from the bridge sensor is pre-amplified by the programmable gain amplifier (PGA). The Multiplexer (MUX) transmits the signals from bridge sensor, external diode or separate temperature sensor to the ADC in a certain sequence (instead of the temp. diode the internal pn-junction (TS) can be used optionally). Afterwards the ADC converts these signals into digital values.

The digital signal correction takes place in the calibration micro-controller (CMC). It is based on a correction formula located in the ROM and on sensor-specific coefficients (stored into the EEPROM during calibration). Dependent on the programmed output configuration the corrected sensor signal is output as analog value or in digital format (I^2C , ZACwireTM). The configuration data and the correction parameters can be programmed into the EEPROM via the digital interfaces.

Copyright © 2007, ZMD AG, Rev. 1.00, 2008-06-04

Advanced Automotive Sensor Signal Conditioner

Datasheet

PRELIMINARY

4/17

1.2 Application Modes

For each application a configuration set has to be established (generally prior to calibration) by programming the on-chip EEPROM regarding to the following modes:

- Sensor channel
- Sensor mode: ratiometric bridge excitation in voltage or current supply mode.
- **Input range**: the gain adjustment of the AFE with respect to the maximum sensor signal span and the zero point of the ADC has to be chosen
- Additional offset compensation XZC: the extended analog offset compensation has to be enabled if required, e.g. if the sensor offset voltage is near to or larger than the sensor span.
- Resolution/response time: the A/D converter has to be configured for resolution and converting scheme or ADC Order (first or second order). These settings influence the sampling rate, signal integration time and this way the noise immunity.

Temperature

- Temperature measurement: the source for the temperature correction has to be chosen.

1.3 Analog Front End (AFE)

The analog front end consists of the PGA, the MUX and the ADC.

1.3.1. Programmable Gain Amplifier

Table 1 shows the adjustable gains, the sensor signal spans and the allowed common mode range.

No.	overall gain	Max. span V _{IN_SP}	Gain Amp1	Gain Amp2	Gain Amp3	Input common mode ran V _{IN_CM} in % VDDA ²	
	a _{in}	[mV/V] ¹				XZC=off	XZC=on
1	420	1,8	30	7	2	29 65	4555
2	280	2,7	30	4,66	2	29 65	4555
3	210	3,6	15	7	2	29 65	4555
4	140	5,4	15	4,66	2	29 65	4555
5	105	7,1	7,5	7	2	29 65	4555
6	70	10,7	7,5	4,66	2	29 65	4555
7	52,5	14,3	3,75	7	2	29 65	4555
8	35	21,4	3,75	4,66	2	29 65	4555
9	26,3	28,5	3,75	3,5	2	29 65	4555
10	14	53,75	1	7	2	29 65	4555
11	9,3	80	1	4,66	2	29 65	4555
12	7	107	1	3,5	2	29 65	4555
13	2,8	267	1	1,4	2	32 57	

Table 1: Adjustable gains, resulting sensor signal spans and common mode ranges

¹ Recommended internal signal range is 75% of supply voltage in maximum. Span is calculated by formula: span = 75%*VDDA / gain

² Bridge in voltage mode, containing maximum input signal (with XZC: +300% Offset), 14bit accuracy refer "ZMD31150 Functional description" for usable input signal/common mode range at bridge in current mode

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The Information furnished in this publication is preliminary and subject to changes without notice.

ZMD31150 Advanced Automotive Sensor Signal Conditioner

Datasheet

PRELIMINARY

5/17

1.3.2. XZC - Analog Sensor Offset Compensation

The ZMD31150 supports two methods of sensor offset compensation (zero shift):

- digital offset correction
- XZC analog compensation for large offset values (up to in maximum approximately 300% of span, depending on gain adjustment)

Digital sensor offset correction will be processed at the digital signal correction/conditioning by the CMC. Analog sensor offset pre-compensation will be needed for compensation of large offset values, which would be overdrive the analog signal path by uncompensated gaining. For analog sensor offset pre-compensation a compensation voltage will be added in the analog pre-gaining signal path (coarse offset removal). The analog offset compensation in the AFE can be adjusted by 6 EEPROM bits.

PGA gain a _{iN}	Max. span V _{IN_SP} in mV/V	Offset shift per step in % full span	Approx. maximum offset shift in mV/V	Approx. maximum shift in [% V _{IN_SP}] (@ ± 31)
420	1,8	12,5%	7,8	388%
280	2,7	7,6%	7,1	237%
210	3,6	12,5%	15,5	388%
140	5,4	7,6%	14,2	237%
105	7,1	5,2%	13	388%
70	10,7	7,6%	28	237%
52,5	14,3	5,2%	26	388%
35	21,4	7,6%	57	237%
26,3	28,5	5,2%	52	161%
14	53,75	12,5%	194	388%
9,3	80	7,6%	189	237%
7	107	5,2%	161	161%
2,8	267	0,83%	72	26%

Table 2: Analog Zero Point Shift Ranges (XZC)

Copyright © 2007, ZMD AG, Rev. 1.00, 2008-06-04

Advanced Automotive Sensor Signal Conditioner

Datasheet

PRELIMINARY

6/17

1.3.3. <u>Measurement Cycle</u>

The Multiplexer selects, depending on EEPROM settings, the following inputs in a certain sequence.

 \rightarrow

- Temperature measured by external diode or thermistor, internal pn-junction or bridge
- Internal offset of the input channel (V_{OFF})
- Pre-amplified bridge sensor signal

The complete measurement cycle is controlled by the CMC. The cycle diagram at the right shows its principle structure.

The EEPROM adjustable parameters are:

• n=<1,31>: Pressure measurement count

After power on the start routine is called, which contains all needed measurements once.

Remark: The tasks "CMV", "SSC/SCC+" and "SSC/SCC-" are contained independent from EEPROM configuration always in cycle.

1.3.4. Analog-to-Digital Converter

The ADC is an integrating AD-Converter in full differential switched capacitor technique.

Programmable ADC-resolutions are r_{ADC} =<13,14> and with segmentation <15,16> bit.

It can be used as first or second order converter. In the **first order** mode it is inherently monotone and insensitive against short and long term instability of the clock frequency. The conversion cycle time depends on the desired resolution and can be roughly calculated by:

$$t_{CYC_1}$$
 = 2^r μ s / 2 / f_{CLK}

In the **second order** mode two conversions are stacked with the advantage of much shorter conversion cycle time and the drawback of a lower noise immunity caused by the shorter signal integration period. The conversion cycle time at this mode is roughly calculated by:

$$t_{CYC_2} = 2^{(r+3)/2} / 2 / f_{CLK}$$

The calculation formulas give a overview about conversion time for one AD-conversion. Refer Calculation sheet "ZMD31150_Bandwidth_Calculation_Rev*.xls" for detailed calculation of sampling time and bandwidth.

Copyright © 2007, ZMD AG, Rev. 1.00, 2008-06-04

Temperature Auto Zero 1 \rightarrow Pressure measurement n \rightarrow 1 Temp measurement \rightarrow n Pressure measurement \rightarrow 1 Pressure auto zero \rightarrow Pressure measurement \rightarrow n 1 CMV \rightarrow n Pressure measurement \rightarrow 1 SSC/SCC+ \rightarrow Pressure measurement n \rightarrow 1 SSC/SCC- \rightarrow n Pressure measurement \rightarrow

Start routine

ZMD31150 Advanced Automotive Sensor Signal Conditioner

Datasheet

PRELIMINARY

The result of the AD conversion is a relative counter result corresponding to the following equation:

$$Z_{ADC} = 2^{r} * (V_{ADC DIFF} / V_{ADC REF} - RS_{ADC})$$

Z_{ADC}:

number of counts (result of the conversion)

adjusted resolution in bit r:

differential input/reference voltage of ADC V_{ADC/REF} DIFF:

digital ADC Range Shift (RS_{ADC} = $\frac{1}{16}$, $\frac{1}{8}$, $\frac{1}{4}$, $\frac{1}{2}$, controlled by the EEPROM content) RS_{ADC}:

With the RS_{ADC} value a sensor input signal can be shifted in the optimal input range of the ADC.

ADC Adjustment		approx. Output Resolution *1)		-	e Rate , *2)	Averaged Bandwidth @		
Order	r _{ADC}	Digital	Analog	f _{с∟к} =3MHz	f _{CLK} =4MHz	f _{CLK} =3MHz	f _{ськ} =4MHz	
O _{ADC}	Bit	Bit	Bit	Hz	Hz	Hz	Hz	
1	13	13	12	345	460	130	172	
1	14	14	12	178	237	67	89	
1	15	14	12	90	120	34	45	
1	16	14	12	45	61	17	23	
2	13	13	12	5859	7813	2203	2937	
2	14	14	12	3906	5208	1469	1958	
2	15	14	12	2930	3906	1101	1468	
2	16	14	12	1953	2604	734	979	

Table 3: Output resolution versus sample rate

*1) ADC resolution should be one bit higher then applied output resolution, if AFE gain is adjusted in such manner, that input range is used more than 50%. Otherwise ADC resolution should be more than one bit higher than applied output resolution.

*2) The sampling rate (AD conversion time) is only a part of the whole cycle, refer "ZMD31150 bandwidth calculation sheet" for detailed information

Remark:

ADCs reference voltage ADC_{VREF} is defined by the potential between <VBR_T> and <VBR_B> (or </DDA> to </SSA>, if CFGAPP:BREF=1). The theoretically input range ADC_{RANGE INP} of the ADC is equivalent to ADCs reference voltage.

In practice ADCs input range should be used in maximum from 10% to 90% of ADC_{RANGE INP} - a necessary condition for abiding specified accuracy, stability and nonlinearity parameters of AFE. These condition is also valid for whole temperature range and all applicable sensor tolerances. Inside of ZMD31150 is no failsafe task implemented, which verifies abiding of these condition.

Copyright © 2007, ZMD AG, Rev. 1.00, 2008-06-04

Advanced Automotive Sensor Signal Conditioner

Datasheet

PRELIMINARY

1.4 Temperature Measurement

The ZMD31150 supports four different methods for temperature data acquiring needed for calibration of the sensor signal in temperature range. Temperature data can be acquired using:

- an internal pn-junction temperature sensor,
- an external pn-junction temperature sensor connected to sensor top potential (VBRTOP),
- an external resistive half bridge temperature sensor and
- the temperature coefficient of the sensor bridge at bridge current excitation.

Refer "ZMD31150 Functional Description" for a detailed explanation of temperature sensor adaptation and adjustment.

1.5 System Control and Conditioning Calculation

The system control supports the following tasks/features:

- control the measurement cycle regarding to the EEPROM-stored configuration data
- 16 bit correction calculation for each measurement signal using the EEPROM stored calibration coefficients and ROM-based algorithms = signal conditioning
- manage start up sequence and start signal conditioning
- handle communication requests received by the serial interface
- failsafe tasks for the functions of ZMD31150 and message detected errors with diagnostic states

Refer "ZMD31150_FunctionalDescription_Rev_*.PDF" for a detailed description.

1.5.1. Operation Modes

The internal state machine represents three main states:

- the continuous running signal conditioning mode called Normal Operation Mode: NOM
- the calibration mode with access to all internal registers and states called Command Mode: CM
- the failure messaging mode called Diagnostic Mode: DM

1.5.2. Start Up Phase¹

The start up phase consist of following parts:

1 internal supply voltage settling phase (=potential VDDA-VSSA) – finished by disabling the reset signal through the power on clear block (POC). Refer "ZMD31150_HighVoltageProt_Rev_*.PDF", chapter 4 for power on/off thresholds.

Time (for beginning with VDDA-VSSA=0V): 500µs to 2000µs, AOUT: tristate

- 2 system start, EEPROM read out and signature check (and ROM-check, if CFGAPP:CHKROM=1). *Time: ~200μs (~2000μs with ROM-check), AOUT: LOW (DM)*
- 3 processing the start routine of signal conditioning (all measures & conditioning calculation). *Time: 5x AD conversion time, AOUT behavior depending on adjusted OWI mode (1.6):*
 - OWIANA & OWIDIS => AOUT: LOW (DM)
 - OWIWIN & OWIENA => AOUT: tristate

¹ All described timings are roughly estimated values and correlates with internal clock frequency. Timings estimated for fclk=3MHz.

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The Information furnished in this publication is preliminary and subject to changes without notice.

ZMD31150

Advanced Automotive Sensor Signal Conditioner

Datasheet

PRELIMINARY

9/17

The analog output AOUT will be activated at the end of start up phase depending on adjusted output and communication mode (1.6). In case of detected errors Diagnostic Mode (DM) is activated and diagnostic output signal is driven at the output.

After the start up phase the continuous running measurement and calibration cycle is started. Refer "ZMD31150_BandwidthCalculation_Rev_*.xls" for detailed information about output update rate.

1.5.3. <u>Conditioning Calculation</u>

The digitalized value for pressure (acquired raw data) is processed with the correction formula to remove offset and temperature dependency and to compensate non-linearity up to 3^{rd} order. The result of the correction calculation is a non-negative 15 Bit value for pressure (P) in the range [0; 1). This value P is clipped with programmed limitation coefficients and continuously written to the output register of the digital serial interface and the output DAC.

Note: The conditioning includes up to third order nonlinearity sensor input correction. The available adjustment ranges depend on the specific calibration parameters, for a detailed description refer to "ZMD31150 Functional Description". To give a rough idea: Offset compensation and linear correction are only limited by the loose of resolution it will cause, the second order correction is possible up to about 30% full scale difference to straight line, third order up to about 20% (ADC resolution = 13bit). The used calibration principle is able to reduce present nonlinearity errors of the sensor up to 90%. The temperature calibration includes first and second order correction and should be fairly sufficient in all relevant cases. ADC resolution influences also calibration possibilities – 1 bit more resolution reduces calibration range by approximately 50%. Calculation input data width is in maximum 14bit. 15 & 16bit ADC resolution mode uses only a 14 bit segment of ADC range.

1.6 Analog Output AOUT

The analog output is used for output the analog signal conditioning result and for "End of Line" communication via the ZACwire[™] interface (one wire communication interface - OWI). The ZMD31150 supports four different modes of the analog output in combination with OWI behavior:

- OWIENA: analog output is deactivated, OWI communication is enabled
- OWIDIS: analog output is active (~2ms after power on), OWI communication is disabled
- OWIWIN: analog output will be activated after time window, OWI communication is enabled in time window of ~500ms in maximum, transmission of "START, CM" command has to be finished during time.
 - transmission of "START_CM" command has to be finished during time window OWIANA: analog output will be activated after ~2ms power on time,

OWI communication is enabled in time window of ~500ms in maximum, transmission of "START_CM" command has to be finished during time window, to communicate the internal driven potential at AOUT has to be overwritten by the external communication master (AOUT drive capability is current limited)

The analog output potential is driven by an unity gain output buffer, those input signal is generated by an 12.4bit resistor string DAC. The output buffer (BAMP) – a rail-to-rail OPAMP - is offset compensated and current limited. So a short circuit of analog output to ground or power supply does not damage the ZMD31150.

Copyright © 2007, ZMD AG, Rev. 1.00, 2008-06-04

Advanced Automotive Sensor Signal Conditioner

Datasheet

PRELIMINARY

10/17

1.7 Serial Digital Interface

The ZMD31150 includes a serial digital interface (SIF), which is used for communication with the circuit to realize calibration of the sensor module. The serial interface is able to communicate with two communication protocols $- I^2 C^{TM}$ and ZACwireTM (an one wire communication interface – also called OWI). The OWI can be used to realize a "End of Line" calibration via the analog output AOUT of the complete assembled sensor module.

Refer "ZMD31150 Functional Description" for a detailed description of the serial interfaces and communication protocols.

1.8 Failsafe Features, Watchdog and Error Detection

The ZMD31150 detects various possible errors. A detected error is signalized by changing the interal status in diagnostic mode (DM). In this case the analog output is set to LOW (minimum possible output value = lower diagnostic range – LDR) and the output registers of the digital serial interface are set to a significant error code.

A watchdog oversees the continuous working of the CMC and the running measurement loop. The operation of the internal clock oscillator is verified continuously by oscillator fail detection.

A check of the sensor bridge for broken wires is done permanently by two comparators watching the input voltage of each input (sensor connection and short check). Additionally the common mode voltage of the sensor and sensor input short is watched permanently (sensor aging).

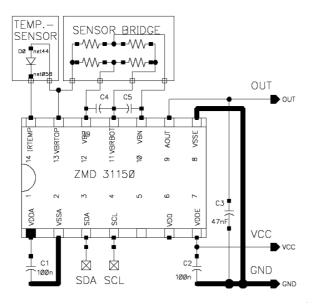
Different functions and blocks in digital part - like RAM-, ROM-, EEPROM- and register content - are watched continuously. Refer "ZMD31150 Functional Description" for a detailed description of safety features and methods of error messaging.

1.9 High Voltage, Reverse Polarity and Short Circuit Protection

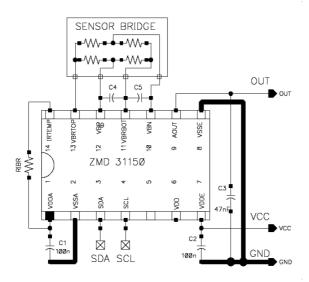
The ZMD31150 is designed for 5V power supply operation.

The ZMD31150 and the connected sensor is protected from overvoltage and reverse polarity damage by an internal supply voltage limiter. The analog output AOUT can be connected (short circuit, overvoltage and reverse) with all potentials in protection range under all potential conditions at the pins VDDE and VSSE.

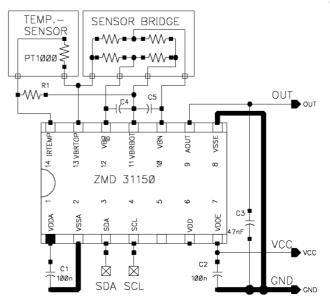
All external components – explained in application circuit in chapter 2 – are required to guarantee these operation, the protection is no time limited. Refer "ZMD31150 High Voltage Protection Description" for a detailed description of protection cases and conditions.



Advanced Automotive Sensor Signal Conditioner


Datasheet

PRELIMINARY


2. Application Circuit Example

Example 1: Bridge in voltage mode, ext. diode temp sensor

Example 3 Bridge in current mode, temp via bridge TC

Example 2: Bridge in voltage mode, external thermistor

SYM BOL	PARA METER	MIN	ТҮР	MAX	UNIT			
C1	С	100		470	nF			
C2	С	100			nF			
C3	С	4	47	160	nF			
C4, C5	С	0		10	nF			
R1			10		kOhm			
RIBR	R	refer 5.2.8 Ohr						

Table 4: Application Circuit Parameters

The application circuits contain external components, which are needed for overvoltage, reverse polarity and short circuit protection.

Higher values for C3, C4 & C5 increases EMC immunity. Notice: Value of C3 summarizes load capacitor and cable capacity.

Copyright © 2007, ZMD AG, Rev. 1.00, 2008-06-04

Advanced Automotive Sensor Signal Conditioner

Datasheet

PRELIMINARY

3. ESD-Protection

All pins have an ESD Protection of >2000V. Additionally the pins VDDE, VSSE and AOUT have an ESD Protection of >4000V.

ESD Protection referred to the human body model is tested with devices in SSOP14 packages during product qualification. The ESD test follows the human body model with 1.5kOhm/100pF based on MIL 883, Method 3015.7.

Pin	Name	Description	Re- marks	Usage/ Connection ¹	Latch-Up related Application Circuit Restrictions and/or Remarks
9	AOUT	Analog output & one wire IF IO	IO	Required/-	Trigger Current/Voltage: -100mA/33V
7	VDDE	Positive external supply voltage	Supply	Required/-	Trigger Current/Voltage: -100mA/33V
6	VDD	Positive digital supply voltage	Analog IO	Required or open/-	only capacitor to VSSA is allowed, otherwise no application access
8	VSSE	Negative external supply voltage	Ground	Required/-	
4	SCL	I ² C clock	Digital IN, pullup	-/VDDA	Trigger Current/Voltage to VDDA/VSSA:
3	SDA	I ² C data IO	Digital IO, pullup	-/VDDA	+/-100mA or 8/-4V
2	VSSA	Negative analogue supply voltage	Analog IO	Required/-	
1	VDDA	Positive analogue supply voltage	Analog IO	Required/-	
13	VBR_T	Bridge top potential	Analog IO	Required/VDDA	Depending on application circuit,
11	VBR_B	Bridge bottom potential	Analog IO	Required/VSSA	short to VDDA/VSSA possible
14	IRTEMP	Temp sensor & current source resistor	Analog IO	-/VDDA, VSSA	Depending on application circuit
12	VBP	Positive input sensor bridge	Analog IN	Required/-	
10	VBN	Negative input sensor bridge	Analog IN	Required/-	

4. Pin Configuration, Latch-Up and Package

Table 4: Pin Configuration and Latch-Up Conditions

ZMD31150 is packaged in a SSOP14 green package (5.3mm body width) with a lead-pitch 0.65mm:

Pin-Nr	Pin-Name		Pin-Name
8	VSSE		VDDE
9	AOUT		VDD
10	VBN		n.c.
11	VBR_B	ZMD 2345 2345	SCL
12	VBP		SDA
13	VBR_T		VSSA
14	IRTEMP		VDDA

¹ Usage: If "Required" is notified a electrical connection is necessary – refer application circuit

Connection: to be connected to this potential, if not used or no application/configuration related constrains are given

Copyright @ 2007, ZMD AG, Rev. 1.00, 2008-06-04

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The Information furnished in this publication is preliminary and subject to changes without notice.

Advanced Automotive Sensor Signal Conditioner

Datasheet

PRELIMINARY

13/17

5. **IC Characteristics**

5.1 **Absolute Maximum Ratings**

In operation temperature range and without time limitations.

No.	Parameter	Symbol	min	typ	Max	Unit	Conditions
5.1.1	Supply Voltage ¹		-33		33	V DC	to VSSE, refer chapter 2 for application circuits
5.1.2	Potential at Pin AOUT ¹	V _{OUT}	-33		33	V DC	related to VSSE
5.1.3	Analog Supply Voltage ¹		-0.3		6.5	V DC	related to VSSA, V _{DDE} –V _{DDA} < 0.35V
5.1.4	Voltage at all analog and digital IO – Pins	V _{A_IO} , V _{D_IO}	-0.3		VDDA +0.3	V DC	related to VSSA
5.1.5	Storage temperature	T _{STG}	-55		150	°C	

5.2 **Operating Conditions**

All Voltages related to VSSA.

No.	Parameter	Symbol	min	typ	max	Unit	Conditions
5.2.1	Ambient temperature ²	T _{AMB}	-40		150	°C	TQE ²
5.2.2	Ambient temperature advanced performance *	T _{AMB_TQA}	-40		125	°C	TQA
5.2.3	Ambient temperature advanced performance *	T _{AMB_TQI}	-25		85	°C	TQI
5.2.4	Supply Voltage	VDDE	4.5	5.0	5.5	V DC	
5.2.5	Bridge Resistance *, 3	R_{BR_V}	2.0		25.0	kΩ	Bridge Voltage Mode
5.2.7	Bridge Resistance *, ³	R _{BR_C}			10	kΩ	Bridge Current Excitation, notice $I_{BR_{MAX}}$
5.2.8	Resistor R _{IBR} *	R _{IBR}	0.07			R_{BR}	I _{BR} =V _{DDA} /(16·R _{IBR})
5.2.9	Maximum Bridge Current	$I_{BR_{MAX}}$			2	mA	
5.2.10	Maximum Bridge Top Voltage	$V_{BR_{TOP}}$		15 16	·V _{VDDA} - 0.3	V	
5.2.11	TC Current Reference Resistor *	TK R _{IBR}		50		ppm /K	behaviour influences generated current

no measurement in mass production, parameter is guarantied by design and/or quality observation

³

refer "ZMD31150_HighVoltageProt_Rev_*.PDF" for specification and detailed conditions notice temperature profile description in "ZMD31150_DiceAndPackage_Rev_*.PDF" for operation in temperature range >125°C Symmetric behaviour and identical electrical properties (especially with regard to the low pass characteristic) of both sensor inputs of the ZMD31150 is required. Unsymmetric conditions of the sensor and/or external components connected to the sensor input pins of ZMD31150 can generate a failure in signal operation.

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The Information furnished in this publication is preliminary and subject to changes without notice.

Advanced Automotive Sensor Signal Conditioner

Datasheet

PRELIMINARY

5.3 Electrical Parameters

All parameter values are valid on behalf on in chapter 5.2 specified operating conditions (special definitions excluded). All Voltages related to VSSA.

No.	Parameter	Symbol	min	typ	max	Unit	Conditions
	5.3.1 Supply	Current	and Sys	tem O	peratio	on Condit	tions
5.3.1.1	Supply current	I_{VDDE}			5.5	mA	without bridge and load current, $f_{\text{CLK}} \leq 3MHz$
5.3.1.2	Clock frequency	f_{CLK}	2 *	3	4 *	MHz	guaranteed adjustment range
		5.3.2 AF	E (refer	chapt	er 1.3)		
5.3.2.1	Input Span	V_{IN_SP}	1		275	mV/V	analog gain: 4202.8
5.3.2.2	Analog Offset Compensation Range		-300		300		depends on gain adjust, refer 1.3.2
5.3.2.3	Parasitic differential input offset current *	I _{IN_OFF}	-2 -10		2 10	nA	T _{AMB_TQI}
5.3.2.4	Common mode input range	V _{IN_CM}	0.29		0.65		depends on gain adjust, no XZC, refer 1.3.1
	5.3.3 Tem	perature	Measur	ement	(refer	chapter ())
5.3.3.1	External temperature diode channel gain	A _{TSED}	300		1300	ppm FS / mV	
5.3.3.2	External temperature diode bias current	I _{TSE}	6	10	20	μA	
5.3.3.3	External temperature diode input range *		0		1.5	V	
5.3.3.4	External temperature resistor channel gain	A _{TSER}	1200		3500	ppm FS / (mV/V)	
5.3.3.5	External temperature resistor input range *	V _{TSER}	0		600	mV/V	
5.3.3.7	Internal temperature diode sensitivity	ST _{TSI}	700		2700	ppm FS /K	raw values – without conditioning
		5.3.4 Sens	sor Coni	nectio	n Chec	k	
5.3.4.1	Sensor connection loss		100			kΩ	detection threshold
5.3.4.2	Sensor input short				50	Ω	detection threshold

^{*} no measurement in mass production, parameter is guarantied by design and/or quality observation

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The Information furnished in this publication is preliminary and subject to changes without notice.

Advanced Automotive Sensor Signal Conditioner

Datasheet

PRELIMINARY

No.	Parameter	Symbol	min	typ	max	Unit	Conditions
	L	5.3.5	5 AD-Co	nvers	ion		
5.3.5.1	A/D Resolution *	r _{ADC}	13		16	Bit	
5.3.5.2	DNL *	DNL _{ADC}			0.95	LSB	r _{ADC} =13Bit, f _{CLK} =3MHz,
5.3.5.3	INL TQA *	INL _{ADC}			4	LSB	best fit, 2nd order, complete AFE,
5.3.5.4	INL TQE	INL _{ADC}			5	LSB	5.3.5.5
5.3.5.5	ADC Input Range	Range	10		90	%VDD	A
	5.3	.6 DAC & A	nalog C	utput	(Pin A	AOUT)	
5.3.6.1	D/A Resolution	r _{DAC}		12		Bit	analog output, 10-90%
5.3.6.2	Output current sink and source for VDDE=5V	I _{SRC/SINK} OUT			2.5 5	mA	Vout: 5-95%, R _{LOAD} >=2kΩ Vout: 10-90%, R _{LOAD} >=1kΩ
5.3.6.3	Short circuit current	I _{OUT_max}	-25		25	mA	to VSSE/VDDE ¹
5.3.6.4	Addressable output signal range	V _{SR_OUT95} V _{SR_OUT90}	0.05 0.1		0.95 0.9	VDDE	
5.3.6.5	Output slew rate *	SR _{OUT}	0.1			V/μs	C _{LOAD} < 50nF
5.3.6.6	Output resistance in diagnostic mode	R _{OUT_DIA}			82	Ω	Diagnostic Range: <4/>96%, R _{LOAD} >=2kΩ <8/>92%, R _{LOAD} >=1kΩ
5.3.6.7	Load capacitance *	CLOAD			150	nF	C3 + CL (refer chapter 2)
5.3.6.8	DNL	DNL _{OUT}	-1.5		1.5	LSB	
5.3.6.9	INL TQA *	INL _{OUT}	-5		5	LSB	best fit, r _{DAC} =12Bit
5.3.6.10	INL TQE	INL _{OUT}	-8		8	LSB	best fit, r _{DAC} =12Bit
5.3.6.11	Output Leakage current @ 150grd	I _{LEAK_OUT}	-25		25	μA	in case of power or ground loss
		5.3.7	System	Respo	onse		
5.3.7.1	Startup time ²	t _{sta}			5	-	to 1st output, fclk=3MHz, no ROM check, ADC: 14bit & 2 nd order
5.3.7.2	Response time (100% jump) *	t _{RESP}	256		512		f _{CLK} =4MHz, 13Bit, 2nd order, refer chapter 0
5.3.7.3	Bandwidth *			5		kHz	comparable to analog SSCs

¹ minimum output voltage to VDDE or maximum output voltage to VSSE

² Depends on resolution and configuration - start routine begins approximately 0.8ms after power on

^{*} no measurement in mass production, parameter is guarantied by design and/or quality observation

Copyright © 2007, ZMD AG, Rev. 1.00, 2008-06-04

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The Information furnished in this publication is preliminary and subject to changes without notice.

Advanced Automotive Sensor Signal Conditioner

Datasheet

PRELIMINARY

5.3.7.4	Analog Output Noise Peak-to-Peak *	$V_{\text{NOISE},\text{PP}}$			10	mV	shorted inputs, gain= bandwidth ≤ 10kHz
5.3.7.5	Analog Output Noise RMS *	V _{NOISE,RMS}			3	mV	shorted inputs, gain= bandwidth \leq 10kHz
5.3.7.6	Ratiometricity Error	RE_{OUT_5}			1000	ppm	maximum error of VDDE=5V to 4.5/5.5V
5.3.7.7	Overall failure (deviation from ideal line including INL, gain, offset & temp errors)	F _{ALL} TQI F _{ALL} TQA F _{ALL} TQE	0	.25 (0. .5 (0.2 1.0 (0.5	5)	% FS	13Bit 2 nd order ADC, fclk<=3MHz, XZC=0 ¹ , no sensor caused effects; inside of parenthesis: digital readout

Interface Characteristics & EEPROM 5.4

No.	Parameter	Symbol	min	typ	max		Unit	Conditions
5.4.1 I ² C Interface (refer ZMD31150_FD_Rev_*.pdf for timing details)								
5.4.1.1	Input-High-Level *	$V_{\text{I2C}_\text{IN}_\text{H}}$	0.8			\	/DDA	
5.4.1.2	Input-Low-Level *	$V_{\text{I2C}_\text{IN}_\text{L}}$			0.2	\	/DDA	
5.4.1.3	Output-Low-Level *	V _{I2C_OUT_L}			0.15	\	/DDA	Open Drain, I _{OL} <2mA
5.4.1.4	SDA load capacitance *	C _{SDA}			400		pF	
5.4.1.5	SCL clock frequency *	f _{SCL}			400		kHz	
5.4.1.6	Internal pullup resistor *	R _{I2C}	25		100		kΩ	
5.4.2 ZACwire™ One Wire Interface (OWI)								
5.4.2.1	Input-Low-Level *	V _{OWI IN L}			0.2	\	/DDA	
5.4.2.2	Input-High-Level *	V _{OWI_IN_H}	0.75			\	/DDA	
5.4.2.3	Output-Low-Level *	V _{OWI OUT L}			t.b.d.	. \	/DDA	Open Drain, I _{OL} mA</td
5.4.2.4	Start Window *		96	175	455		ms	typ: @ fclk=3MHz
5.4.3 EEPROM								
5.4.3.1	Ambient temperature EEPROM programming *	T_{AMB_EEP}	-40		150	°C		
5.4.3.2	Write cycles *	n _{wri_eep}			100k 100			te <= 85°C te up to 150°C
5.4.3.3	Read cycles *	n _{read_eep}			8 * 10 ⁸		<=17	5°C ²
5.4.3.4	Data retention *	t _{RET_EEP}			15	а	1300h @ 175°C ³ (=100000h@55°C & 27000h@125°C & 3000h@150°C)	
5.4.3.5	Programming time *	t _{wri_eep}		12		ms	per wr	itten word, fclk=3MHz

¹ XZC is active: additional overall failure of 25ppm/K for XZC=31 in maximum, failure decreases linear for XZC adjusts lower than 31 * no measurement in mass production, parameter is guarantied by design and/or quality observation

 ² valid for the dice, notice additional package and temperature version caused restrictions
³ over lifetime and valid for the dice, use calculation sheet "ZMD_TempProfile_Rev_*.xls" for temperature stress calculation, notice additional package and temperature version caused restrictions

Copyright © 2007, ZMD AG, Rev. 1.00, 2008-06-04

Advanced Automotive Sensor Signal Conditioner

Datasheet

PRELIMINARY

6. Reliability

The ZMD31150 is qualified according to the AEC-Q100 standard, operating temperature grade 0.

7. Customization

For high-volume applications, which require an up- or downgraded functionality compared to the ZM31150, ZMD can customize the circuit design by adding or removing certain functional blocks.

For it ZMD has a considerable library of sensor-dedicated circuitry blocks.

Thus ZMD can provide a custom solution quickly. Please contact ZMD for further information.

8. Related Documents

- ZMD31150_FeatureSheet _Rev_*.PDF
- ZMD31150_FunctionalDescription _Rev_*.PDF
- ZMD31150_HighVoltageProt_Rev_*.PDF
- ZMD31150_DicePackagePin_Rev_*.PDF
- ZMD31150_BandwidthCalculation_Rev_*.xls
- ZMD31150 Application Kit Description ZMD31150_APPLKIT_Rev_*.PDF
- ZMD31150 Application Notes ZMD31150_AN*.PDF

This information applies to a product under development. Its characteristics and specifications are subject to change without notice. ZMD assumes no obligation regarding future manufacture unless otherwise agreed in writing. The information furnished hereby is believed to be correct and accurate. However, ZMD shall not be liable to any customer, licensee or any other third party for any damages in connection with or arising out of the furnishing, performance or use of this technical data. No obligation or liability to any customer, licensee or any other third party shall result from ZMD's rendering of technical or other services.

For further information:

ZMD AG Grenzstrasse 28 01109 Dresden, Germany Phone +49 (0)351-8822-366 Fax +49 (0)351-8822-337 sales@zmd.de www.zmd.biz ZMD America, Inc. 201 Old Country Road, Suite 204 Melville, NY 11747, USA Phone +01 (631) 549-2666 Fax +01 (631) 549-2882 sales@zmda.com www.zmd.biz ZMD America, Inc. 15373 Innovation Drive, Suite 110 San Diego, CA 92128, USA Phone +01 (858) 674-8070 Fax +01 (858) 674-8071 sales@zmda.com www.zmd.biz

Copyright © 2007, ZMD AG, Rev. 1.00, 2008-06-04